Главная страница статей --> Хитрости при программировании php, заметки по базам данных

Поиск по сайту - статичный контент (Perl)

Источник: realcoding.net

[1 страница]
Поиск по сайту, не самый сложный элемент, но довольно муторный. Так не хочется его делать, а надо. Я не буду рассматривать возможности внедрения в сайт поисковых форм Яндекса или Google, про это можно почитать у них самих. Будем делать собственный поиск по сайту.

Итак, что у нас дано:

*
сайт состоящий из статичных страниц;
*
файлы страниц расположены в разных папках различного уровня (у меня CMS собирает ЧПУ);
*
база данных MySQL (не использовать базу данных в поисковой машине - странное занятие, тем более что сейчас базы данных уже не роскошь);

Для того что бы у нас осуществлялся поиск нужно будет собрать поисковые индексы. Я использую для этого два способа (способов, на самом деле, гораздо больше): простой и немного сложнее. В первом я использую встроенные функции MySQL базы данных, во втором - собственный велосипед.

Определим алгоритм работы скрипта индексирования поисковой машины (основные подпрограммы):



Красным пунктиром выделены стандартные процедуры для обоих способов, процедуры выделенные синим радикально отличаются.

* Процедура рекурсивного обхода директорий - процедура, последовательно проходящая по файлам и папкам нашего сайта и выбирающая нужные файлы;
* Процедура обработки файла - процедура, обрабатывающая контент файла;
* Процедура формирования данных - обработанный контент собирается в блок данных для переноса в базу данных;
* Процедура обновления базы данных - сформированный блок данных заносится в базу данных;

Алгоритм работы скрипта вывода результатов поиска:



Данный скрипт нужно максимально упростить, так как индексацию мы запускаем максимум раз в сутки, то поисковый скрипт запускается на несколько порядков больше раз и тратить ресурсы во время поиска - нецелесообразно. Для этого требуется максимально оптимизировать информацию в базе данных, что бы она возвращала нам максимально подготовленную информацию для вывода, чтобы не производить лишних манипуляций.

Какая информация нужна нам для вывода результатов запроса:

*
URL страницы - ссылка на найденную страницу;
*
название страницы - эту информацию мы будем брать из тега страницы;
*
краткое описание страницы - эту информацию мы будем брать из мета-тега description страницы.

В качестве подопытного кролика я выбрал портал АльфаКМВ. Этот ресурс имеет в своем составе немногим более 3000 страниц разной вложенности в папках и можно спокойно оценить скорость работы нашей поисковой системы.

1. Способ первый: использование встроенных функций


Хоть MySQL считается не особо навороченной базой данных (хотя я лично так не считаю), у неё есть неоспоримые плюсы - это простота использования, а основной, в нашем случае, индекс FULLTEXT, который без особых сложностей организует нам прекрасный поиск. нужно просто приложить к этому небольшие усилия:

1.1. Организация таблицы

Индексная таблица состоит всего из четырех полей - ссылка на страницу (url), заголовок страницы (title), описание страницы (description) и текстовая часть (полнотекстовый индекс):

CREATE TABLE `search` (
            `
url`           varchar(250)   NOT NULL,
            `
title`         text           NOT NULL,
            `
description`   text           NOT NULL,
            `
search`        text           NOT NULL,
       
PRIMARY KEY (`url`),
       
FULLTEXT KEY `s` (`search`)
    )
TYPE=MyISAM;

1.2. Рекурсия

Вторым этапом нам нужно пройтись по всем папкам и файлам сайта для индексации, для чего воспользуемся рекурсией.

...
Рекурсия - вызов функции или процедуры из неё же самой (обычно с другими значениями входных параметров), непосредственно или через другие функции (например, функция А вызывает функцию B, а функция B — функцию A). Количество вложенных вызовов функции или процедуры называется глубиной рекурсии.
...
Следует избегать избыточной глубины рекурсии, так как это может вызвать переполнение стека.
...

Задумчиво, но так как мы не знаем глубину папок в которых могут лежать файлы сайта, то прийдется использовать её, хотя можно поискать на CPAN, но мне кажется, это лишняя трата времени, быстрее написать самому.

Создаем скрипт, который будет индексировать наш сайт, назовем его index.pl.

#!/usr/bin/perl
# Подключаем основные модули
use strict;
use
warnings;
use
DBI;
# Локаль - обязательно, т.к. кириллицу мы будем использовать и в регах
use locale;
use
POSIX qw(locale_h);
   
setlocale(LC_CTYPE, ru_RU.CP1251);
   
setlocale(LC_ALL, ru_RU.CP1251);

# Обозначаем глобальные переменные
use vars $dbh, $url_start, $dir_start, @dir_filter, @file_type;
# Директория DocumentsRoot сайта
   
$dir_start = /var/www/my_sites/html;
# Домен сайта
   
$url_start = http://www.my_sites.ru;
# Фильтр директорий (директории, которые исключаются из индексации)
   
@dir_filter = (
                   
cgi-bin,
                   
images,
                   
temp,
                   );
# Фильтр файлов (какие расширения файлов индексировать)
   
@file_type = (
                  
shtml,
                  
html,
                  
htm,
                  );

# Сразу отправляем заголовок браузеру
   
print Content-type: text/html; charset=windows-1251 ;

# Открываем временный файл для хранения данных
   
open (TMP, >>, /var/www/my_sites/cgi-bin/search/search.txt);
   
flock (TMP, 2);
# Передаем управление процедуре рекурсии
   
&recursion();
# Закрываем временный файл
   
close TMP;

    &
update_db;

    print
Индексация завершена!;
exit;

sub recursion {
# Получаем текущую директорию рекурсии относительно DocumentsRoot
   
my $postfix = shift undef;
# Формируем абсолютный путь текущей директории
   
my $dir = $dir_start.($postfix );
# Объявляем локальным переменные FOLDER (в основном нам нужен дескриптор*)
   
local *FOLDER;
# Открываем директорию
   
opendir (FOLDER, $dir);
# И последовательно считываем
   
while (my $item = readdir FOLDER) {
# отсекаем элементы . и .. что бы не выскочить на директорию выше
       
next if $item eq . $item eq ..;
# Определяем относительный путь
       
my $path = ($postfix )./.$item;
# Если элемент списка - директория, то порождаем процедуру вглубь рекурсии
       
&recursion($path) if -d $dir./.$item && !map {$path =~ /^/$_/} @dir_filter;
# Если элемент списка - файл, то передаем относительный путь к нему в процедуру обработки
       
&file_parse($path) if -f $dir./.$item && map {$path =~ /.$_$/} @file_type;
    }
# Закрываем директорию
   
close FOLDER;
# ... и возвращаемся
   
return 1;
}

Как видно - никаких сложностей. Однако хочу заметить, что в глубь рекурсии мы уходим только для директорий, а не символьных ссылок, причем, я бы и не рекомендовал использовать символьные ссылки, чтобы рекурсия не зациклилась во время обработки.

1.3. Предварительное формирование данных или просто формирование данных

Третий этап - подготовка файла и индексации. Так как очень часто на страницах сайта используются SSI внедрения, то их нужно будет включить в основное тело страницы.

...
в одном разделе сайта дизайнер внедрил красивый заголовок через SSI, когда поисковая система проиндексировала страницы, то ключевые слова заголовка были пропущены, и поиск осуществлялся "криво"

...
sub file_parse {
# Получаем относительный путь к файлу
   
my $file = shift;
# Открываем файл страницы
   
open (FILE, $dir_start$file);
# Объявляем переменную в которой бодем собирать контент
   
my $content;
# Построчно производим обработку
   
while (<FILE>) {
       
$_ =~s /<!--#include virtual=(.*?)-->/&_include_ssi($file ,$1)/eg;
       
if ($content) {$content .= $_} else {$content = $_}
    }
# Закрываем файл страницы
   
close FILE;
# Обработка контента
# Убираем жесткие пробелы и пробельные символы
   
$content =~s /&nbsp;/ /gi;
   
$content =~s /[s ]/ /gi;
# Выбираем заголовок и описание страницы
   
my ($title) = $content =~ /<title>(.*)<title>/i;
   
my ($description) = $content =~ /<meta.*description.*content=(.*?)>/i;
# Производим чиску контента оставляя только символы
   
$content =~s /[^w-s]/ /g;
   
$content =~s /s{2,}/ /g;

# Отправляем обработанный контент, путь, заголовок и описание в процедуру обновления БД
   
&update_data($content, $title, $description, $file);

    return
1;
}

sub _include_ssi {
# Получаем имя HTML файла и имя файла SSI
   
my ($file, $ssi) = @_;
# Объявляем переменную - путь к файлу внедряемому через SSI
   
my $path;
# Если файл берется из корня
   
if ($ssi =~ /^[/]{2}/) {

       
$path = $dir_start.$ssi;
# Чистим двойные слеши
       
$path =~s /([/]){2,}/$1/g;

# Иначе
   
} else {
# Определяем директорию основного файла
       
my ($path) = $file =~ /(.*)[/].*?/;
        if (
$path) {$path .= $ssi} else {$path = $ssi}
# Чистим двойные слеши
       
$path =~s /([/]){2,}/$1/g;

    }
# считываем контент файла
   
open (SSI, $path);
   
my $content = join(, <SSI>);
   
close SSI;
# Возвращаем контент файла
   
return $content
}

В данной процедуре, производится обработка контента файла. Хочу заметить, что SSI я обрабатываю только для директивы include virtual, при этом не проверяю внедряемый файл, если же через include virtual внедряются скрипты или используются дополнительные директивы, то данный код нужно будет соответственно доработать. Так же может возникнуть вопрос, почему я разбиваю скрипт на такие маленькие процедуры, когда, по большому счету, достаточно было бы описать это в одной процедуре - все это только лишь для того что бы облегчить понимание предмета, а последнее вынесение процедуры update_data - потому что дальше способы индексации разнятся между собой.

1.4. Обновление блока данных

В общем, в эту процедуру мы передаем уже практически готовые данные для вставки в базу данных, поэтому:

Для варианта с LOAD DATA:

sub update_data {
# Получаем данные
   
my ($content, $title, $description, $file) = @_;
# Формируем строку
   
my $line = $url_start.$file. .$title. .$description. .$$content. ;
# Записываем строку во временный файл
   
print TMP $line;
    return
1;
}

для варианта с INSERT INTO:
sub update_data {
# Получаем данные
   
my ($content, $title, $description, $file) = @_;
# Формируем запрос
   
my $update = INSERT INTO wm5_search_one
                  SET
                    url = $url_start$file,
                    title = $title,
                    description = $description,
                    search = $$content
                
;
# Выполняем запрос к БД
   
$dbh->do($update);

    return
1;

}

Правда, во втором варианте нужно не забыть предварительно подключится к базе данных.

1.5. Обновление базы данных

Можно рассмотреть два варианта обновления данных:

*
сформировать временный файл с данными для последующей выгрузки в базу данных с помощью команды LOAD DATA;
*
последовательно вставлять записи с помощью команды INSERT;

Если мы обновлять данные будем с помощью LOAD DATA. Информация уже сформирована и требуется только обновить базу данных:

sub update_db {
# Подключаемся к базе данных
   
$dbh = DBI->connect(DBI:mysql:database=search;host=localhost;port=3306, user, password)
        or die
$DBI::errstr;
# Обнуляем таблицу
   
$dbh->do(DELETE FROM search;)
        or die
$DBI::errstr;
# Загружаем данные
   
$dbh->do(LOAD DATA INFILE /var/www/my_sites/cgi-bin/search/search.txt INTO TABLE search;)
        or print
ERROR!!! $DBI::errstr <br> ;
# Отключаемся от базы данных
   
$dbh->disconnect();
# Удаляем временный файл
   
unlink /var/www/my_sites/cgi-bin/search/search.txt;
   
1;
}

Хочу обратить внимание на то что я указываю абсолютные пути к временному файлу. Это условие обязательное, так как скрипт рассчитывается на запуск с помощью cron.

Теперь рассмотрим особенности обновления данных, с помощью INSERT, и с помощью LOAD DATA. Довольно противоречивое мнение у меня сложилось по поводу выбора способа обновления. С одной стороны команда INSERT очень медленная, но с другой, тратится меньше ресурсов. Я протестировал оба варианта, благо изменения скриптов для этого не большие (вместо дописывания данных во временный файл вставляем запись в таблицу, а процедуру обновления базы данных опускаем). Итак, что получилось:

Тестирование производилось, на одном и том же сайте но на разных серверах (более и менее мощном), сайт все тот же ~3000 статичных страниц:

Более мощный сервер - P4 2.8 (HyperThreading), 800 Mhz FSB, память двухканальная 400 Mhz Kingston 512 MB, Promise UltraDMA133, 2 х 40Gb (Seagate Barracuda) зеркало (на нем сайт) и еще 120 Gb (Maxtor) SATA (на нем ядро SuSE 9.2, MySQL 4.0.18).

*
При использовании INSERT индексация производилась в течение 130-140 секунд объем данных таблицы 105961780 байт;
*
При использовании LOAD DATA индексация производилась в течение 110-120 секунд (40-50 секунд - формирование временного файла, 60-70 секунд обновление базы данных), размер временного файла - 106216954, объем данных таблицы - тот же;

Прирост производительности не большой - 15%, но во время обновления базы данных сама база находилась "в трансе", т.е. другие обращения к базе данных происходили с большой задержкой. Отсюда можно сказать - быстрее, но не рациональнее.

Более слабый сервер - P4 2.4, 533 Mhz FSB, память 333 Mhz 1024 MB, 20 Gb (Samsung 7200) на нем ядро Red Hat 7.3, MySQL 4.0.18 и сайт.

*
При использовании INSERT индексация производилась в течение 600-900(!) секунд объем данных таблицы 105961780 байт;
*
При использовании LOAD DATA индексация производилась в течение 250-300 секунд (100-120 секунд - формирование временного файла, 150-200 секунд обновление базы данных), размер временного файла - 106216954, объем данных таблицы - тот же;

Конечно, большой разброс по времени дало количество текущих процессов (видимо сказалось отсутствие HyperThreading), но результат показывает, что прирост производительности составил, как минимум 100%, и хотя база данных была дольше "в трансе", но не в таком глубоком (почему - сложно сказать конфиги MySQL идентичны, может большее количество оперативной памяти сказалось).

Итак - решать Вам по какому пити идти, все зависит от сервера, его возможностей и ограничений.

1.6. Скрипт вывода результатов поиска

Вот теперь самое интересное, зачем мы собственно делали столько манипуляций. Я не буду особо расписывать данный скрипт: формировать постраничный вывод, "наводить красоту" и так далее... просто сделаю скелет:

#!/usr/bin/perl
# Подключаем основные модули
use strict;
use
warnings;
use
DBI;
use
CGI qw(param);
use
locale;
    use
POSIX qw(locale_h);
   
setlocale(LC_CTYPE, ru_RU.CP1251);
   
setlocale(LC_ALL, ru_RU.CP1251);
# Получаем поисковый запрос
my $search = param(search) undef;

# Сразу отправляем заголовок браузеру
print Content-type: text/html; charset=windows-1251 ;
# Форма запроса
print <form action= method=get>;
print
<input type=text name=search value=.($search ).>;
print
<input type=submit value=search>;
print
</form>;
# Если запрос пустой, то останавливаем скрипт
unless ($search) {print Результатов запроса - 0; exit}
# На всякий случай чистим полученные данные
$search =~s /[^ws-]/ /g;
# Сжимаем пробельные символы
$search =~s /s+/ /g;
# Подключаемся к базе данных
my $dbh = DBI->connect(DBI:mysql:database=search;host=localhost;port=3306, user, password)
             die
$DBI::errstr;
# Формируем запрос
my $sql = SELECT
                url, title, description,
                MATCH (search) AGAINST ($search) AS score
           FROM search
           WHERE MATCH (search) AGAINST ($search)
           LIMIT 50
;
my $sth = $dbh->prepare($sql);
$sth->execute() die $DBI::errstr;
# Устанавливаем счетчик
my $i = 1;
while (
my $row = $sth->fetchrow_hashref()) {
# Печатаем строку результата
   
print $i, - <a href=, $$row{url}, >, $$row{title}, <a><br>,
          $
$row{description}, <br><br>;
   
$i++
}
$sth->finish();
# Отключаемся от базы данных
$dbh->disconnect();

if (
$i == 1) {print Результатов запроса - 0}
else {print
Результатов запроса - , $i - 1}

exit;

Практически наш скрипт готов. Он прекрасно отрабатывает полнотекстовый поиск, при этом без особых сложностей.

1.7. Дополнительные возможности

Для начала, (хотя это нужно было сделать в самом начале) ознакомимся с документацией MySQL - <6.8. Полнотекстовый поиск в MySQL> в данном документе сказано, что существует возможность усложнения поискового запроса по индексу, то есть определить "вес" слов, а так же использовать их "усечение". Доработав немного скрипт поиска можно создать "сносную" поисковую машину, которая учитывает морфологию. Для этого сделаем следующее:

а). в переменной поискового запроса заменим два-три последних символа в каждом слове, а так же добавим разрешенные символы:

...
$search =~s /[^wds-+~<>]/ /g;
#
Сжимаем пробельные символы
$search =~s /s+/ /g;
$search =~s /([wd-]+)[wd-]{2}/$1*/g;
$search =~s /s*s/ /g;
...

б). в запросе к базе данных укажем IN BOOLEAN MODE:

...
my $sql = SELECT
                url, title, description,
                MATCH (search) AGAINST ($search IN BOOLEAN MODE) AS score
           FROM search
           WHERE MATCH (search) AGAINST ($search IN BOOLEAN MODE)
           LIMIT 50
;
...

Но, хочу сразу оговорится: при использовании BOOLEAN MODE на редкость плохо считается релевантность* и результаты запроса не сортируются, поэтому использовать эту функцию - IMHO не стоит. И на помощь приходит "солдатская смекалка", что нам мешает во время индексации формировать двойной контент с полными словами и с "обрезанными" и так же расширить подобным образом запрос?

а). в скрипте индексации, после "чистки" контента файла:

...
my $content2 = $content;
$content2 =~s /([w-]+)[w-]{2}/$1/g;
$content2 =~s /s[w-]s/ /g;
$content .= $content2;
...

б). в поисковом скрипте, после "передачи" формы:

...
my $search2 = $search;
$search2 =~s /([w-]+)[w-]{2}/$1/g;
$search2 =~s /s[w-]s/ /g;
$search .= .$search2;
...

И "о чудо!!!" скрипт начал искать, то что раньше его было не заставить. Конечно имеет смысл еще "поиграть" с количеством обрезаемых символов в словах и формировать не "двойной" поисковый запрос, а "тройной" и более... но это дело техники...

Так же, не нужно забывать о том, что именно ищут пользователи на Вашем сайте. Для того, что бы это определись, достаточно сохранять поисковые запросы пользователей, а потом анализировать их. В соответствии с анализом корректировать контент на страницах для более "правильного" поиска (например: пришлось включить в контент страниц слово "анегдот", потому как половина пользователей искала именно его).

*ПРИМЕЧАНИЕ: Это не написано в официальной документации, но как показывает практика, при использовании IN BOOLEAN MODE, отключается критерий поиска фразы, то есть, если в поисковом запросе несколько слов, то они ищутся не как фраза, а каждое слово отдельно, при этом совпадение слова определяется как 1, коэффициент релевантности в итоге получается целое число, варьировать дробной частью которого возможно только "весом" слов, что не приемлемо для большинства пользователей.



Похожие статьи:
- Генерация контента сайта с использованием Template Toolkit
- Создание приложения, работающего с XML-данными
- Модуль Apache mod_rewrite
- Пишем правильный online WYSIWYG-редактор
- Хороший дизайн
- Создание динамических элементов страницы с помощью CSS.
- Поиск по сайту - статичный контент (Perl)
- Аспектно-ориентированная веб-разработка и PHP
- Оптимизация Apache + PHP + PostgreSQL
- Выбор ключевых слов
- Что такое Ruby on Rails 1.0?
- fror = flex + ruby on rails
- Как зашифровать HTML-код веб-страницы


Оглавление | Обсудить на форуме | Главная страница сайта | Карта сайта |

Контакты
Редакция:
[0.002]